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We calculate the average number of steps N for edge-to-edge, "'normal," and 
indelinitely growing self-avoiding walks (SAWs) on two-dimensional critical 
percolation clusters, using the real-space renormalization-group approach, with 
small "'H'" cells. Our results are of the form N = AL ns'~" + B, where L is the end- 
to-end distance. Similarly to several deterministic fractals, the fractal dimensions 
DSA w for these three different kinds of SAWs are found to be equal, and the 
differences between them appear in the amplitudes A and in the correction 
terms B. This behavior is attributed to the hierarchical nature of the critical 
percolation cluster. 
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corrections to scaling. 

1. I N T R O D U C T I O N  

The statistics of  self-avoiding walks (SAWs) on percolation clusters, 
simulating, e.g., polymers trapped in porous media, ~l~ has attracted a great 
deal of  interest, ~2 ~,1 not only due to physical applications, but also because 
it is a simple problem of  statistical mechanics with quenched random dis- 
order. The SAW is a random walk which is never allowed to intersect itself. 
Within this constraint one may define different types of  SAWs, each having 
its own set of  rules which define the weight associated with the walk. In this 
paper, we concentrate on three types of  SAWs. The first type contains the 
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edge-to-edge SAWs, which are all the walks which connect two given 
points of the structure. The second type is the indefinitely growing SAW 
(IGSAW), which starts at a given point and the walk is "legitimate" only 
if it is capable of continuing to grow forever from its present endpoint. ~7~ 
The third type is the "normal" SAW, which is included in the ensemble 
whether it can continue to grow forever or not. Obviously, the ensemble of 
"normal" N-point SAWs contains also all the N-point IGSAWs and the 
edge-to-edge SAWs. 

Previous studies 17-91 of IGSAWs and "normal" SAWs revealed that on 
the two-dimensional square lattice the average end-to-end distance ( L )  
scales as ( L )  ~: N", where N is the number of steps and v =  1/Dsgw 
or 1/DIGsA w. Interestingly, these authors found a large difference between 
the fractal dimensions of the different kinds of walks: DsAw=4/3 and 
D I G S A  w = 1.75. It has been suggested < 8~ that the critical dimension of the 
problem is d,. = 3, above which the fractal dimensions are equal. 

One of the theoretical tools which has allowed great advances in the 
study of SAWs on both regular lattices ~ ~ol and on fractal geometries ~24~ is 
the real space renormalization-group (RG) approach. In this treatment one 
calculates the averages in the grand-canonical ensemble by assigning a 
weight factor x to each step of the walk. Thus the weight of a legitimate 
N-step walk becomes x 'v. This yields a fixed point x*, 15~ at which the 
average number of the steps in the SAW behaves as a power law, 
N oc L ~ where L is the end-to-end distance of the walk. 

In a recent paper, Shussman and Aharony ~a~ used this technique to 
investigate the three types of SAWs on several deterministic fractal struc- 
tures, such as the Mandelbrot-Given (MG) curve. ~2~ Like critical perco- 
lation clusters, these fractals have a finite order of ramification. They 
found that the average number of steps behaves asymptotically as 
N = AL ~ ' ' '  + B. Remarkably, in contrast to regular lattices, all three kinds 
of walks were found to have the same fractal dimension on a given deter- 
ministic fractal. However, the amplitudes A and the correction terms B 
differed among the types of SAWs. 

In this paper, we extend the analysis to randomly diluted fractals at 
the percolation threshold. At the threshold, the critical percolation clusters 
are statistically self-similar/TM Therefore, they can be described by the 
renormalization group. Here we use an approximate real-space RG, called 
the "H-cell" RG, which turned out to be very accurate for bond percolation 
on the square lattice/~4"j5~ It has also given excellent results for the 
permeability of oil reservoirs away from the percolation threshold? ~6~ 

Analyzing the different kinds of SAWs with the "H-cell" RG, we find 
very similar results to those for the deterministic fractals, especially for the 
MG curve. Specifically, the final expression for the SAW average length has 
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the same exponent for all three SAWs, and the differences appear in the 
amplitudes and correction terms. 

The rest of the paper is organized as follows. In the next section we 
summarize briefly the details of the analytical method, together with some 
preliminary results. The expressions for the average number of steps for 
the IGSAWs and normal SAWs are worked out in Section 3. The paper 
concludes in Section 4. 

2. A N A L Y T I C A L  M E T H O D  

For simplicity, we discuss two-dimensional (2D) percolation, and 
consider a 2 • 2 "H-cell" as shown in Fig. l a. In the RG transformation, 
the eight bonds in the cell are replaced by a "renormalized" cell with only 
two bonds, which represent connectivity in the horizontal and vertical 
directions. Considering the horizontal spanning, and ignoring the dangling 
bonds, one realizes that the horizontal connectivity is determined by five 
bonds. Given that each of these five bonds has a probability p (or 1 -  p) 
to be occupied (or vacant), the resulting configurations are displayed in 
Fig. l b together with their probabilities. The sum of these probabilities 
yields the renormalized probability of the new bond, c ~4. 131 

p' = R(p)  = 2 p S -  5p4 + 2p3 + 2p 2 (1) 

A direct calculation shows that the nontrivial fixed point is p* = p,. = 1/2, 
as it should be for the bond problem. One of the advantages of the "H-cell" 
is that this result holds for a general L x L cellJ t51 

(b) 
T 53--- _ 7 -  

pS p4(1.p ) 4p4(1.p) 2p3(1.p)2 

l _ 
2p311-p) 2 4p311-p) 2 2p2(1-p) 3 

Fig. I. (a) A 2 x 2  "'H-cell" with eight bonds (left) and a renormalized cell with only two 
bonds (rightl; (b) generic parts of the original cell, which contribute to the horizontal 
spanning. 
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Following ref. 5, we can then study the SAWs on this structure by 
assigning an energy e to each occupied bond which also contains the SAW. 
The statistical weight associated with each bond in the SAW thus becomes 
x = e x p [ - ( e - - t u ) / T ] ,  where T is the temperature and /1 is the chemical 
potential per single occupied bond. In this context x is called the fugacity 
per bond, generalizing the ordinary definition of the fugacity [exp(/L/T)]. 
In the grand-canonical ensemble, the partition function Z is given by sum- 
ming the statistical weights of all the legitimate SAWs (given the type of 
SAW of interest) of all the lengths N, 

z =  y' x" (:21 
SAWs 

where Z is the partition function of a specific realization of the quenched 
random occupation of bonds. For a finitely ramified fractal, Z can be 
calculated iteratively. In this case, the right-hand side of Eq. (2) can be 
written as a sum over SAWs which walk over renormalized bonds, and 
the renormalized fugacity x' for SAWs on each such bond is found by a 
similar equation, x ' --Y~x 'v, with the sum running over edge-to-edge 
SAWs inside this bond/lj~ This procedure is more complicated in the ran-  

dora case, when different bonds may have different fugacities, t~vj In that 
case, each factor x 'v is replaced by a product of (potentially) different 
fugacities, and one should follow the full distribution function of the 
fugacities. Le Doussal and Machta ~5~ followed this route numerically, and 
found a flow toward a "zero-temperature" fixed point of the distribution. 
However, the numerical values they found for v were quite close to those 
found by a simpler approximate approach, which can be carried out 
analytically. In this approach, used by Meir and Harris, c4~ one follows 
only the iterated values of the average  occupied bond "free energy" 
( log(x)) .  This approximation is in the same spirit as done, e.g., for the 
conductance of dilute resistor networks, c ,5. ,3~ where excellent results were 
obtained by replacing the distribution function of the bond conductan- 
ces by two delta functions, at zero (with probability l - p )  and at the 
renormalized bond average conductance. In many respects, the distribu- 
tion function of log(x) looks like those of other geometrical cluster 
properties, e.g., the minimal path between pairs of points on the cluster. 
As we showed elsewhere, (Is~ the scaling of the average property (or, 
equivalently, of the location of the peak of the distribution) does follow 
the same recursion relations found by such an approximation (although 
the width also increases under iteration). Since our main purpose here is 
not to obtain exact exponents, but rather to compare several different 
types of SAWs, we believe that treating all these types within the same 
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approximate scheme will still give a reliable answer concerning their 
relative behavior. 

All possible edge-to-edge SAWs on the 2 x 2 "H-cell" are classified in 
Fig. 2. Summing over the different configurations of the original cell, we 
find the recursion relation for the average free energy log(x), c4) 

p '  log(x')  = ~ (probability of configuration) x log(Z) 

= log(x)[ 6p 5 - 14p 4 + 6p 3 + 4,o 2 ] 

+ log( 1 + x)[  - 3p s + 4p 4 ] + log(2)[p  4 ] (3) 

Analyzing this recursion relation at p ' - - p - - p *  = 1/2, one finds the fixed 
point corresponding to the SAWs at the percolation threshold: ( p * =  1/2, 
x* ~ 0.787877). 

The average length of the edge-to-edge SAWs is given by taking the 
derivative of the free energy in the nth generation, F,  = -  T log(x,), with 
respect to the chemical potential, 

aF,, 8_ !og(x,,) 
(N~, ,  = a/L a log x ....... , (4) 

The fractal dimension associated with the SAWs can then be determined by 
calculating how the average SAW length increases during each step of the 
RG transformation. The average number  of bonds in the SAW scales 
asymptotically as ( N ) o c  L ns^w. Since the end-to-end length in the nth 

Configuration Probability Edge-to edge walks Z 

- - - ~  p5 . ~  (2) - -  (2) 2x2*2X 3 

p4 {1.10) (2) 2x2 

~ -  ,p' o-p) __[- .) .) ,2 . ,  

2P~~ )~ _ r - -  (t) ,3 

' ~ "  2p 3 (l-p) 2 (1) x 2 

4p 3 (l-p) 2 {1) x 2 

2p 2 (1 -p) 3 (1) x 2 

Fig. 2. All the edge-to-edge SAWs on various configurations of the 2 x2 "H-cell." The 
numbers in parantheses indicate how many times such a walk occurs. Each bond of the walk 
has fugacity x, and Z = ZsAw x'V. 
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generation is L=b",  where b is the length rescale factor (here b =2) ,  we 
conclude that 

DSA w = lim log ( (N) , ,+ , / (N) , , )  
. . . . .  log(b) 

(5) 

Using Eq. (4) at the critical point (p*, x*), we find that 

(N>,,+ t/<N),, = 0  log(x'____.~) ....... �9 
8 log(x) = m  (6) 

Specifically, applying the procedure above to the edge-to-edge SAWs, 
we find from Eq. (3) that 

01og(x') ....... . 34 5 x* 
m -  0 log(x) 16 -~ 16 1 + x  * ~2"2627 (7) 

y ie ld ing  DSA w ~ 1.178. Using Eq. (4), we find that the final expression for 
the average number of steps in the SAW is given by 

( N ) , , = x *  0F,, 0__F, 0Fi  I = m " = L  ~ ' (8) 
--0-x-x j ...... . - -0F, ,_ I " 01ogx[.,.=.,.. 

where F,, = log(x,). Thus, the amplitude for the edge-to-edge SAWs on the 
"H-cell" RG is equal to one, and there are no corrections to scaling. 
A similar situation was encountered previously ct~l for the MG curve, with 
a slightly different fractal dimension for the edge-to-edge SAWs (the MG 
curve yields Dsa w ~ 1.206). 

3. D IFFERENT TYPES OF S A W S  ON THE " H - C E L L "  RG 

In this section we calculate the expressions for the average number of 
steps, considering IGSAWs and normal SAWs in the nth generation of the 
RG transformation. We limit ourselves to the "H-cell" RG, thus counting 
only those SAWs which enter the RG cell of Fig. la through one edge (e.g., 
the left vertical edge) and either leave the cell through the opposite edge or 
end inside the bulk of the cell, but excluding those SAWs which touch the 
lower edge of the cell. This is based on the basic spirit of the "H-cell" RG. 
This procedure actually maps the original lattice onto a hierarchical struc- 
ture, whose backbone is built on the basic "Wheatstone bridge": the basic 
"H" is replaced by a bridge, as in Fig. 3a, and then each bond on the 
bridge is replaced by a smaller bridge, and so on. The transverse bonds 
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(a) 

(b) 

Fig. 3. Hierarchical structure for (a) the backbone, (b) with a dangling bond. 

then play the role of dangling bonds, or dead ends (Fig. 3b). I ~3~ Experience 
showsl~3. ~81 that this hierarchical structure imitates the physical properties 
of the original lattice very well. 

As far as the IGSAWs are concerned, we can ignore the dangling 
bonds altogether, since the walks must be able to leave the structure from 
the right edge. In principle, for the "normal" SAWs, dangling bonds could 
have some effect, and we discuss them further below. 

3.1. I G S A W s  on the  " H - C e l l "  RG 

The ensemble used above to analyze the edge-to-edge SAWs becomes 
unsuitable for such self-avoiding walks, which do not have to span between 
the ends of the basic iteration. We define an ensemble for IGSAWs by 
generalizing the grand canonical ensemble and taking into account all the 
walks that start at an edge of a fractal generation and end either inside the 
bulk or span to the other edge. Since the edge-to-edge distance L is still a 
characteristic linear size for the SAWs, we continue to use it for our scaling 
expressions. Thus we find the recursion relation for the free energy of the 
IGSAWs in the first generation of the RG, 7~, by considering all the 
possible IGSAWs in various configurations of the "H-cell" (see Fig. 4) 

p'Tm = ' ~  (probability of configuration) x log(Z) 

= Iog(x)[p'] + log(1 +x ) [p '  +pS-- 2p3(1 __p)2] 

+ log(2)[p4(1 _ p) + pS] + log(2 + 2x + x 2 ) [ 2 p 4 (  I - p)] 

+ log(1 +x+x2)[2p3(1 _p)2]  (9) 

822i86,5-6-18 
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Configuration Probability IGSAW's Z 

T , '  _ r -  ,,) ,,, _1 ,,, _ ,,, , . . , . , . , , ,  

p4 (l-p) - -  (2) (2) 2x § 2x 2 

2p4(1-p) . . . 7  (1) (1) / (1) - -  (2) 2 x * 2 x 2 + x  3 

" ~  2p4{,-p) " ~  (1) - - ( 1 )  ~ 1  ( 1 ) -  (,) x § 2 4 7  3 

' - ~  2p 3 (l-p) 2 - -  (I) - -  (1) x + x 2 

4p 3 (l-p) 2 (t) i (1) x + x 2 

2p 2 (l-p) 3 (1) ~ (1) x + x 2 

Fig. 4. All the IGSAWs on various configurations of the 2 x 2 "H-cell." The walks enter the 
cell from the left. 

The recursion relation for the next generations can be written down by 
observing that legitimate IGSAWs for the (n + 1)th generation have to 
span from edge to edge in the nth generation and subsequently be 
indefinitely growing in the (n + 1 )th generation. Therefore each N-step walk 

U I i,, where P,, = log(x,,) and of Fig. 4 carries a statistical weight x,, 
l,, = log( i,, ) are the free energies associated with nth-generation edge-to- 
edge SAWs and IGSAWs, respectively. Inspecting the walks classified in 
Fig. 4, we find that 

7,,+, = + 7 , ( p , , ) -  p,, (]0) 

This expression is again similar to that found for the MG curve in ref. 11. 
The next step is to calculate the average length of IGSAWs in the 

(n + 1)th generation, which can be calculated from the derivative of the 
corresponding free energy [see Eq. (4)]. Using Eqs. (10) and (8) and 
the chain rule, we find that 

0 7 t ,  + 1 
(Nt)"+J=-x Ox =(Nt ) , ,+[ (Ni ) l -1]m"  

_ ( N / )  i 1 m,,+ i + (11) 
m -  1 m -  1 
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where m ~ 2.2627, defined in Eq. (6), has the same value as before. At the 
critical point one finds from Eq. (9) that 

87, ,- = 
(NI )  t -Ol~  x" 

15 x 1 2 x ( l + x )  1 ~ ' ( l + 2 x )  1 
= - - q -  q 

l + 1 6 1 + x  8 2 + 2 x + x  2 8 1 + x + x - ' J  

~ 1.6024 (12) 

Combining Eqs. (9) and (11), we get our final expression for the average 
length of legitimate IGSAWs, 

( N~),, + t = 0-4770L ~ + 0.5230 (13) 

where DiGs^w = DSAW = log(m )/log(2 ) ~ 1.178. 
In conclusion, we find that the fractal dimension for the IGSAWs is 

equal to that of the edge-to-edge SAWs, but the amplitudes differ and the 
IGSAWs have a constant correction term. We should note again that 
similar results were found for the Mandelbrot -Given curve c ~  with only 
minor differences in the numerical factors. 

3.2 .  N o r m a l  S A W s  on  t h e  " H - C e l l "  R G  

In this subsection we use a similar method to analyze the normal 
SAWs, which are included in the ensemble whether they can grow 
indefinitely or not. In addition to the edge-to-edge walks (see Fig. 2), the 
normal SAWs also include those ending inside the bulk. At first we count 
only those SAWs which do not enter the dangling ends, as listed in Fig. 5. 
Considering the first generation of the RG transformation, we find that the 
free energy ,~t is given by 

p 'S ,  = l o g ( x ) [ p ' ]  + log(1 + x)[  2p2( 1 - p)~ + 2p~( 1 - p)2 + 5p4(i _ p ) ]  

+ log(2 + x)[  2p3( 1 - p)2] + log( 1 + 2x)[2p3( 1 - p)2] 

+ log(2 )[p4( 1 - p) ]  + log( 1 + x + x-')[ 2p3( 1 - p)2] 

+ log( 2 + 3x + 2x 2) [ 2p4( 1 - p) ] 

+ log(2 + 4x + 3x2)[p 5 ] (14) 

The recursion relation of the free energy in the following generations can 
be written down in terms of the free energies of all the normal walks 
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Configuration Probability Walks ending In Ihe bulk Z 

7 - "  ps " 7  {1) ~ (2) _ _  (2) 2 x . 2 x 2 .  x 3 

p 4 (1 -p) (:l) 2X 

2P4 (l"P) " 7  (1) J ( 2 ) -  (2) 2 x * 2 x 2 . x  3 

m E "  2P4 (I"P) " - 1  ( "  ~ (~) x §  z 

-_~ 2p3(1-p) 2 _- I  (u ~ m �9 *x  ~ 

i F  2p3 (l-p) 2 " ~  (1) ~ (1) x . , 2  

2p 3 |l-p) 2 ~ (1) x 

2p 3 {l-p) 2 ~ (2) 2x 

2p 2 {l-p) 3 ~ (1) x 

Fig. 5. All the SAWs ending inside the bulk on various configurations of the 2 x 2 "'H-cell." 
The walks enter the cell from the left. The normal SAWs also contain the edge-to-edge ones, 
shown in Fig. 2. 

IS,, = log(s , , ) ] ,  edge-to-edge walks [F,, = log(x, ,)] ,  and walks ending in the 
bulk [ C,, = log(c,,)].  Similarly to the previous section, all the N-step walks 

N - - I  in Figs. 2 and 5 car ry  statistical weights x,, s,,, except for the two 
_->shaped walks in Fig. 5, which contr ibute  x; ~, + 2x~,c,,. Thus  we find 

p'S,,  +, = p ' S  + p ' S ~ ( P ) - p ' P  

+ [2p4( 1 - p)  ] log(2s + 3sx + sx 2 + x 3 + 2x2c) 

- [2p4( 1 - p ) ]  log(2s + 3sx + 2sx 2) 

+ [pS]  log(2s + 4sx + 2sx 2 + x 3 + 2x2c) 

_ [pS]  log(2s + 4sx + 3sx-') (15) 

where we have adop ted  a shor t -hand  nota t ion  by d ropp ing  the subscripts  
n on the r ight-hand side of  the equation.  Obviously,  as the normal  SAWs 
consist of  the edge-to-edge walks and those ending inside the bulk, the 
par t i t ion functions for each generat ion obey the sum rule s = x + c. 

As previously,  we next calculate the average n u m b e r  of  steps of  all the 
normal  SAWs. Using Eqs. (14) and (15), we find after a s t ra ightforward 
calculat ion (see Appendix)  that  in the leading order  the average length of  
all the normal  SAWs behaves as 

(Ns ) , ,+~  ~0.5177L~ +O.4000+O.1531L-'~'+O.OO27L -'~" (16) 
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where DSA w ~ 1.178 has the same value as above, while ~9~ ~0.383 and 
0z ~ 1.561. Thus we find that the normal SAWs also scale with the same 
fractal dimension as the IGSAWs and the edge-to-edge SAWs, but with 
different correction-to-scaling terms and with different amplitudes. Again, 
the results for the MG curve are very similar. ~t~l 

Finally, we need to consider the "normal" SAWs which may end inside 
the dangling ends (still with the restriction that they do not exit through 
the lower edge of the cell). The calculation, which involves many more 
possible paths, is similar to that given in the Appendix. It is easy to see that 
because every new N-point walk generated by dangling ends carries weight 

N - -  I x,, s,,, the dangling ends do not yield new kinds of terms for the recur- 
sion relation (A1). In particular, we can follow the steps of the Appendix 
and rederive Eq. (A13), with slightly modified ( N s ) t , s t ,  gk(k=0 ,  1, 2), 
and q. Such changes affect only amplitudes and the correction-to-scaling 
terms, but the leading scaling power remains unchanged. For  example, 
using the structure depicted in Fig. 3b, we find 

( N s ) , ,  + I ~ 0.5630L/~S^" + 0.3976 + 0.1028L-~ + 0.0023L-1.714 (17) 

This result is again similar to that of ref. 11, which found that the dangling 
ends do not change the leading scaling behavior for the MG  curve either. 

3.3. S A W s  on Undi luted "H-Cel l '"  

In order to study the possible reasons for the equal dimensionalities 
for the different kinds of SAWs, we carried out similar calculations for the 
undiluted "H-cell," i.e., for the leftmost configuration in the upper row of 
Fig. 1. The results are thus obtined by simply setting p ' - - p - - 1  in all the 
above recursion relations. 

Classifying all the possible edge-to-edge SAWs on that configuration, 
we find the recursion relation for the average free energy 

log(x' ) = log(2x 2 + 2x 3) (18) 

which has the fixed point x* = �89 - 1 + x/~) ~ 0.36603. Proceeding similarly 
to Section 2, we find that 

0 log(x') 2 + 3x* ~ 2.2680 (19) 
m ~ ....... . -  1 + x  - - - - - - - -~  

which gives DsAw = log(m)/log(2)~ 1.1814. Thus we find that within this 
approximation, the fractal dimension of SAWs on the diluted and 
undiluted "H-cell" are not very different: 1.178 and 1.181, respectively. 
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The analysis of IGSAWs and "normal" SAWs is very similar to what 
we used in the dilute case. Considering all the possible IGSAWs we find 
(the notation is the same as in Section 3.1) 

71 = log(2x + 4x -~ + 2x 3) (20) 

7, +, = 7, + 7,(F,,) - F,, (21) 

This gives 

1 + 3 x  
( N ~ ) ~  = 1 - t - x  I ....... ~ 1.5359 (22) 

- m - ( N ~ ) ,  ( N t )  l 1 m"+l  + (23) 
( N / )  ,, + i m -- 1 m - 1 

The latter equation is the same as Eq. (11 ), and we find 

( N t )  ,, + I = 0 . 4 2 2 6 L  t~'"s^w + 0.5774 (24) 

where D I G S A w = D s A w  = 1.181. The analysis of the normal SAWs is more 
tedious, but still straightforward, giving the final result 

( N s ) , , + ~  ~0.5000LI~SAw+0.3349+0.2401L "~'-0.0462L -:~z (25) 

where DSA w ~ 1.181 has the same value as above, while 0~ = 2 - O s A  w 
0.819 and 02 = 2. 

From this analysis it is obvious that the structure of the problem on 
the undiluted "H-cell" is the same as that on the diluted cell. In particular, 
we find that the different SAWs on an "H-cell," diluted or not, possess the 
same fractal dimensions. In fact, this result could have been anticipated 
because the hierarchical structures of Fig. 3 can be well considered as 
special cases of  finitely ramified fractals, for which this kind of the behavior 
appears to be generic. ~ Thus, although the hierarchical structure fails in 
producing the behavior observed on the square lattice, c7 9~ there is room to 
expect that our results for the different types of SAWs do hold on critical 
percolation clusters, due to the hierachical nature of these clusters. 

4. C O N C L U D I N G  R E M A R K S  

Our renormalization group calculation reveals that on the critical 
percolation clusters the fractal dimensions for the edge-to-edge SAWs, 
IGSAWs, and "normal"  SAWs are equal, and the differences appeal in the 
amplitudes and in the correction terms. 
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Our specific calculation for 2D percolation with the 2 x 2 "H-cell" 
y ie lded  DsAw = 1.178. This estimate from the small cell RG is about 
10% lower than recent Monte Carlo estimates, which give DSAW = 

1.29 + 0.025, (6) but the agreement could be improved by increasing the size 
of the "H-cell," as experience shows in other cases. (~8) The main point of 
our RG calculation is that the mathematical structure of the problem 
strongly suggests that the equality of dimensions for the different kinds of 
SAWs may also hold for a general L x L cell, thus remaining valid in the 
limit L ~ c~, which corresponds to the real percolation clusters, and also 
in general dimension d. Our brief analysis of the undiluted "H-cell" allows 
us to identify the origin of this behavior as the hierarchical nature of the 
critical percolation clusters. 

Finally, if is interesting to note the closeness of all our results to those 
found for the MG curve. That curve seems to capture all the physical 
properties of 2D critical percolation clusters. 

A P P E N D I X  

In this Appendix we go through the steps leading to Eq. (16). 
Substituting Eq. (15) in the definition of the average length, we find 

that (p' = p = 1/2) 

where 

og,,+, og,,+ xog,(L,) oL, 
(Ns)"+'=-x Ox -"--~x "" ~ x O---xv 

o [ .,.,:is,,-.,-,,,] 
+i-~x~--s 1 + s,,oc,(x,,) j 

l O [ x ~ , ( s , , - x , , ) ]  +gx log 1+ j 

o~,(x,,)= 2 + 3x,, + 2x~, 

o~2(x,,) = 2 + 4x,, + 3x~, 

(A1) 

(A2) 

(A3) 

Observing that 

OF,, O log(x,) m"=x = (A4) 
Ox 0 log(x) 

0S,, 0 log(s,,) 
( N s ) " = x  Ox 0 log(x) (A5) 
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we can evaluate the derivatives in Eq. (A1), e.g., 

OSt(P,,) O log s l (x , , )  c3 log x,, 
Ox Ologx,, Ologx 

- -  = ( N s )  ,In" 

and find that 

<Ns>.+,  = (Ns) , ,  I 
1 2x 3 1 x3 1 

1 + + i - ~ o c z s + x 2 ( s _ x  ) 1 6 o q s  + x ' - ( s - - x )  

1 
+ [ (N.s-), - 1] m " + ~ - ~ m "  

X [ -- 2~1X3 +40q(S-- X) X ' - - - 2 ( S - - X )  X2(3X-l -4X ~) 

o,.t[ O~lS + X2(S-X) ] 

-- o~x  3 + 2o~2(s -- x )  x 2 -- (s -- x )  X2(4X -t"- 6X2) "] 
+ - ~2 [ ~ 2  s + ~-~s-- ~ - ~  J (A6) 

where we have dropped the subscripts n on the right-hand side of the 
equation. 

In order to evaluate Eq. (A6) at the fixed point where x , , = x *  for all 
n, we study first how s,, behaves as a function of n. From Eq. (15) we find 
that at the fixed point (p* = 1/2, x* = 0.787877) 

s , ,=s , ,  I [ ( 2 + 3 X + 3 X 2 - - X 3 / S , , _ I ) 2 ( l + x ) 8 ( 2 + X ) 2 ( 2 + 2 X )  

x(1 +2x)  2 ( 2 + 4 x + 4 x 2 - - x 3 / s , , _ l ) ( 1  "[-X"l-x2)Z]l/16lx=x, (A7) 

Ignoring the terms x3/s , ,_ ~ ~ O, one finds 

s,, ~ s , , _ t q ~ s t q  ' ' - t  (A8) 

where q~2.950847. From Eq. (14) one gets that at x*, s~=exp(S t )~  
2.282450, and ( N s )  l = x a S t / O x  ~ 1.634353. 

Having found that at the fixed point s ,  diverges geometrically as a 
function of n, we turn back to Eq. (A6) and expand the right-hand side in 
powers of l/s,, .  We find that 

( _l)+m( (1) 
( N s ) , , + , = ( N s ) , ,  1 + g, ~,, ( N s ) t - l + g o + g - ,  +(9  

(A9) 
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where all the functions g depend only on x,, and are numbers at x,, =x*:  

1 [ 2 x 2 ( 2 ~ t - 3 x - 4 x  2) 2x2(o~,_-2x-3x'-)] 
g o  = ' - ~  - - - - -  ~ Jr - - - -  

[ ~,(~, +x-) o~,(o~,+x-) ] 

~0.019331 (A10) 

1 ( 2 X  3 X 3 

g, = ~ \~,  + x---~-" + ~ J  

~ 0.013823 (Al l )  

1 F6x,(-~,§247 2) x3(-3~x2+4x+5x2)] 
g2= ~ L (c~, + x'-)2 + (~2+x2)2 

-0.027610 (A12) 

Substituting Eq. (A9) iteratively into itself and using Eq. (A8), we find that 

s I j = o 

+ [ < N s ) ,  - -  1 + go] mS + g,_ + (9 
j = I I j = I 

< N s ) , -  1 + go 
m - -  1 

Ft/n + I 

xE(a  g, q ) < N s ) t - - [ < N s )  
s l q - - 1  

m 
- 1  + g o ] -  

m - 1  

,. 1 ] 
+ g2-- 

s, 1 -- On~q) 

q 1 
- -g2 -  + g , -  (A13) 

st 1 - ( r e ~ q ) \ q /  s , ( 1 - q )  \ q /  

Substituting the numerical values, we get the final expression, i.e. Eq. (16), 
for the average length of all the SAWs, with DsAw = log(m)/log(2) ~ 1.178, 
oa I = log(m/q)/log(2) ~ --0.383, and ,92 = log(1/q)/log(2) ~ -- 1.561. 
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